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Abstract
We study the elastic properties, electronic structure, and equation of state
of BeO using a first-principles pseudopotential method within the gradient-
corrected approximation of the density functional theory. Comparison of
the calculated and experimental properties of BeO shows good agreement
for all the properties studied here: ground-state structure, linear and bulk
compressibilities, and elastic moduli. Calculations are also performed with
the local density approximation and the differences in elastic properties are
interpreted in terms of a uniform compression. Analysis of the pressure effect
on the lattice parameters and on the atomic coordinates shows that the structure
changes are close to isotropic from zero to 100 GPa.

1. Introduction

Beryllium oxide is an exceptional member of the series of alkaline-earth oxides. It is the only
one to crystallize in the wurtzite rather than in the rock-salt structure. Further, not only is BeO
harder than the other alkaline-earth oxides but also it is among the hardest materials known.
It is a good insulator like other alkaline-earth oxides, but its heat conductivity is an order
of magnitude higher, which makes it a technically promising ceramic [1]. These interesting
physical properties are related to characteristic features of interatomic bonding in BeO: for
example, Compton scattering measurements revealed a significant covalent component of the
primarily ionic bonding in BeO [2].

BeO (bromellite) crystallizes in the hexagonal wurtzite structure with the polar space
group P 63mc. There are two atoms of each kind in the unit cell on the special positions 2b:
beryllium atoms at (1/3, 2/3, 0) and oxygen at (1/3, 2/3, z). The structure is thus defined by
two lattice parameters, a and c, and the internal structural parameter, z. The determination
of the z-parameter using x-ray diffraction is difficult for a number of reasons enumerated in
reference [3]. However, as table 1 illustrates, there is a clear consensus regarding the ground-
state structure of BeO. The atomic arrangement is very close to the ‘ideal’ wurtzite structure
where the atoms of one hcp array occupy the exact centres of the tetrahedral voids of the other
array. This would correspond to a c/a ratio of 1.633 and a z-parameter of 0.375, and so BeO is
only slightly compressed along the z-axis relative to the ideal structure. The accepted values
of a, c, and z are those reported in reference [10] (see table 1).
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Table 1. Theoretical and experimental data for structural parameters, the bulk modulus,
and its pressure derivative for BeO; NCP: norm-conserving pseudopotential; USP: ultrasoft
pseudopotential, AE: all-electron; HF: Hartree–Fock; PIB: potential-induced breathing model.
The values of B and B ′ are evaluated from the fitting of the pressure–volume data to an analytical
equation of state; the errors are obtained from the statistical analysis. Reference [10] provides the
most accurate set of experimental data.

a (Å) c (Å) c/a z B (GPa) B ′

USP-GGAa 2.701 4.387 1.624 0.3777 206(1) 3.33(4)

USP-LDAa 2.634 4.291 1.627 0.3776 220(1) 3.99(5)

NCP-GGA [4] 2.703 4.379 1.620 0.377 203

NCP-LDA [4] 2.650 4.304 1.624 0.378 224

NCP-LDA [5] 2.639 4.299 1.629 0.377 228 3.96

NCP-LDA [6] 2.664 4.324 1.623b 283

AE-LDA [7] 2.665 4.352 1.633 230

HF-LCAO [8] 2.697 4.361 1.617 0.3791 283

PIB [9] 2.775 4.385 1.580 0.385 186 3.86

Experiment [10] 2.698 4.377 1.624 0.3781 210 5.1

Experiment [3] 2.698 4.277 1.585 0.3786

Experiment [1] 2.699 4.385 1.625 0.3778

Experiment [11] 2.6979 4.3772 1.6224 0.3778

Experiment [12] 2.6979 4.3772 1.6224 0.3786

a Present results.
b Fixed during calculation.

The first experimental measurement of the complete set of elastic coefficients of BeO was
reported in reference [13], in which the pulse-echo method was used to determine the five
independent elastic coefficients. The accuracy of the measurements was claimed to be better
than 5%. However, a subsequent work [14] using essentially the same ultrasonic technique
produced C12- and C13-stiffnesses that differed by 30–35% from the earlier results [13]; see
table 2. It has been noted [14] that the C66 ≈ C44 relationship that follows from reference
[13] is not reasonable for a hexagonal crystal. In a more recent study [15] an attempt has been
made to derive low-temperature elastic coefficients from the temperature dependence of the
x-ray Debye–Waller factor. The results obtained are close to those from reference [14], but
the number of approximations in [15] makes it difficult to estimate the accuracy of the data
obtained. BeO is the hardest of all II–VI compounds, and the existing controversy with regard
to the accurate values of its elastic coefficients provides a major motivation for the present
theoretical study.

There are two kinds of elastic coefficient: compliances, Sij , describe the response of a
material to an applied stress; conversely, stiffnesses, Cij , give the stress required to maintain
a given strain. Both stress and strain tensors have three tensile and three shear components.
The linear elastic stiffnesses, Cij , thus form a 6 × 6 symmetric matrix with a maximum of 21
different components, such that σi = Cij εj for small stresses, σ , and strains, ε. The number
of independent non-zero elastic stiffnesses is usually lower due to the crystal symmetry. A
hexagonal crystal has six different symmetry elements (C11, C12, C13, C33, C44, and C66), and
only five of them are independent since C66 = 1

2 (C11 − C12).
Computation of elastic coefficients provides a stringent test of the accuracy of the

description of interatomic interactions. Empirical models are known to produce errors of
the order of at least 10–15% for the diagonal components of the elastic stiffness tensor, and
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Table 2. Elastic stiffnesses of BeO (GPa). The bulk modulus, B, is calculated from the elastic
stiffness tensor. The errors are obtained from the statistical analysis of the results.

Method C11 C12 C13 C33 C44 C66 B

USP-GGAa 439.1(3) 105(2) 72(1) 463(2) 142.1(5) 167(2) 204(1)

USP-LDAb 479(1) 113(1) 81(1) 510(2) 153.2(3) 183(1) 224(1)

USP-LDAc 396(2) 74(2) 51.5(5) 414(2) 139.4(5) 161(2) 173(1)

HF-LCAO [8] 526 110 92 556 148 208 244

PIB [9] 366 113 90 361 132 126 186

Ultrasonic [14] 460.6 126.5 88.5 491.6 147.7 167.0 224

Ultrasonic [13] 470 168 119 494 153 152 244

Debye–Waller [15]d 468 130 120 497 148 169 240

Debye–Waller [15]e 460 125 82 490 145 167 222

a Present results.
b Present results, based on the LDA-optimized structure.
c Present results, based on the experimental structure.
d Extrapolation to 0 K.
e Room temperature data.

the off-diagonal components are predicted even less reliably [16]. It is thus preferable to base
the calculation of elastic coefficients on a quantum-mechanical description of the energetics
of BeO.

The main driving force for the previous theoretical studies of BeO was to investigate
pressure-induced phase transformation of the rock-salt structure. The present work is only
concerned with the properties of the wurtzite modification of BeO, and so we will discuss
previous theoretical results only for the ground state of the hexagonal phase.

One of the first computational studies of hexagonal BeO was undertaken using norm-
conserving pseudopotentials and a plane-wave basis set [6]. At the time, this was a difficult
system to study since solution of the density functional theory (DFT) equations required direct
diagonalization of the Hamiltonian matrix and thus imposed much greater computational
demands than modern methods. This explains why the authors had to restrict the number
of k-points used to two. It was also necessary to use experimental values of the c/a ratio and
of the z-parameter when constructing the theoretical equation of state. The calculated lattice
parameters showed bond-length shortening typical for local density approximation, LDA, and
the bulk modulus was significantly overestimated (table 1).

A semiempirical study of the structure and elastic coefficients of the wurtzite phase within
the potential-induced breathing (PIB) model was presented in reference [9]. It is shown in
tables 1 and 2 that this level of theory is not sufficient for an accurate description of the structure
and properties of BeO, probably because of the covalent contribution to interatomic bonding.

A very accurate pseudopotential LDA study of six different structures of BeO has been
performed in reference [5]. The calculations for the wurtzite phase were carried out with the
energy cut-off of 1360 eV using 60 k-points in the irreducible part of the Brillouin zone. The
results presented in table 1 show that this extreme accuracy does not improve agreement with
experiment for ground-state structural properties compared to older less-accurate calculations
[5]. However, the bulk modulus reported in reference [5] is significantly more reliable than
the earlier theoretical estimates.

All-electron LDA calculations based on two different computational techniques were
reported [7]. The results were obtained for a fixed c/a ratio and a fixed internal coordinate,
z. This is a reminder of the fact that all-electron techniques often present enormous technical
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difficulties when calculating forces and stresses. Thus, the pseudopotential approach becomes
a method of choice for applications that require extensive use of the energy gradients, such as
calculation of elastic coefficients.

In this paper, we report the results of a systematic DFT study of electronic, structural, and
elastic properties of hexagonal BeO. The main goal is to resolve an existing controversy with
respect to the values of the off-diagonal components of the elastic tensor.

2. Computational details

The quantum-mechanical calculations performed here are based on density functional theory
[17, 18]. Exchange–correlation effects were taken into account using the generalized gradient
approximation, GGA [19], as implemented in reference [20]. The GGA results for BeO
properties have been shown to be more accurate than those calculated using the local density
approximation [4]. We used the PBE form of the GGA [21], which was designed to be
more robust and accurate than the original GGA formulation. Some of the calculations were
repeated using the LDA exchange–correlation functional. The total-energy code CASTEP
[22, 23] was used, which utilizes pseudopotentials to describe electron–ion interactions and
represents electronic wavefunctions using a plane-wave basis set [24].

We used ultrasoft pseudopotentials [25], which require significantly less computational
resources than norm-conserving potentials [26]. The pseudopotentials were generated using
the PBE exchange–correlation functional. We elected to treat all four electrons of beryllium
as valence since the cost of including 1s electrons is not large for modelling of the small unit
cell of BeO.

The calculations were considered converged when the maximum force on atoms was
below 0.01 eV Å−1 and the stress below 0.03 GPa. One set of calculations was carried out
to produce the equation of state (EOS) of hexagonal BeO up to 100 GPa. In these runs, full
geometry optimization was performed at a fixed value of applied hydrostatic pressure; this
is similar to the experimental procedure for measuring the EOS. The calculated cell volumes
were then used to construct the equation of state, which was fitted to a third-order Birch–
Murnaghan equation to obtain the bulk modulus, B, and its pressure derivative, B ′. While the
entire pressure range of 0–100 GPa was used in the analysis of the structural changes, we only
considered the results in the 0–30 GPa range when fitting the analytical equation of state. This
affects the bulk modulus by no more than 4 GPa and its pressure derivative by no more than 0.2.
The 30 GPa range was chosen as a representative of modern EOS studies using the diamond
anvil cell technique [27]. The choice of the pressure values was such as to provide a denser set
of points at small pressures to increase the fit quality of the analytical equation of state. This
was achieved by using a non-uniform grid of pressure points. We used the step in pressures
of 1 GPa up to 8 GPa, then a step of 2 GPa up to 14 GPa, 3 GPa up to 20 GPa, 5 GPa up to
50 GPa, and 10 GPa up to 100 GPa. Further calculations in the range of 100–200 GPa were
carried out. These latter results are not discussed here since hexagonal BeO is not expected to
be a stable phase at ultrahigh pressures [5].

The second set of calculations was performed to obtain elastic coefficients of BeO.
Practical methods for determining the elastic coefficients from first principles usually set
either the stress or the strain to a finite value, optimize any free parameters of the structure, and
calculate the other property (strain or stress, respectively). With a careful choice of the applied
deformation, elastic coefficients can then be determined. Applying a given homogeneous
deformation (the strain) and calculating the resulting stress requires far less computational
effort, since the unit cell is fixed and only the ionic positions require optimization. This is
the method implemented in the present work. Two strain patterns, one with non-zero first
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and fourth components, and another with a non-zero third component, give stresses related
to all five independent elastic coefficients for the hexagonal system. Two positive and two
negative amplitudes were used for each strain component with the maximum strain value of
0.6%, and then the elastic stiffnesses were determined from a linear fit of the calculated stress
as a function of strain. This technique has been successfully utilized previously for a range of
oxide materials including MgO [28], MgSiO3 [29], and Li2O [30].

3. Results and discussion

3.1. Convergence testing

Elastic coefficients, which describe the second derivatives of the total energy with respect to
atomic displacements, are extremely sensitive to the details of the calculation. We therefore
started by testing the convergence of our results with respect to calculation parameters, such
as the size of the basis set and the quality of the Brillouin zone sampling.

The size of the basis set in the current approach is determined by the maximum kinetic
energy for plane waves. An energy cut-off of 380 eV was used throughout this study. We
tested convergence of the calculations by increasing the cut-off energy to 450 eV and found no
difference in the calculated lattice parameters to within 0.001 Å. In fact, even an energy cut-off
as low as 300 eV produces an adequate description of the structural parameters. We have used
a reasonably large core radius for oxygen, 0.8 Å, when constructing the ultrasoft potential,
which allowed us to obtain accurate results with such low values of the cut-off energy. We
might note that the conventional norm-conserving pseudopotentials, even after optimization
with respect to the required basis set size, require an energy cut-off as high as 1360 eV [5]
or 1500 eV [4]. Even the extremely high cut-off energy of 2660 eV has been utilized during
convergence testing [4]. It is clear that ultrasoft potentials provide the preferred route for
studies of oxide systems more complex than an ideal BeO structure.

The Brillouin zone sampling was carried out using 48 k-points in the irreducible part,
which corresponded to the 11 × 11 × 6 set of Monkhorst–Pack points [31]. Further increase
of the k-point density to 96 points of the 14 × 14 × 8 Monkhorst–Pack set had no effect on
calculated properties. Elastic stiffnesses, which are most sensitive to details of the calculation,
changed by no more than 0.1% when comparing the results obtained with a 380 eV energy
cut-off and 48 k-points to those obtained at 450 eV and 96 k-points.

3.2. Ground-state structure and electronic properties

The ground-state structure of hexagonal BeO as determined from the P = 0 GPa geometry
optimization is given in table 1. We obtained both lattice parameters a and c within 0.003 Å
of the experimental values [10], which illustrates the level of accuracy that can be achieved
in the modern DFT calculations. The error in the internal coordinate, z, is also very small,
0.1%. These results represent the best description of the structure of BeO out of all currently
available theoretical studies, including the all-electron calculations [7].

Comparison of LDA and GGA results shows that the LDA overbinding can be interpreted
as a hydrostatic pressure applied to the system (approximately 14 GPa in this case). The same
conclusion has been reached previously for such systems as elemental Se [32], As, and Sb [33].
The structure of BeO predicted using the LDA has 2% smaller lattice constants while there
is very little distortion of the structure compared to the GGA prediction: the LDA and GGA
values of c/a and z are very close. Both LDA and GGA data are quantitatively similar to the
results obtained using norm-conserving pseudopotentials [4]. For example, the bulk modulus
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calculated using the LDA is about 20 GPa higher than the GGA result (table 1). This can be
attributed entirely to the difference between the equilibrium cell volumes obtained using these
two approximations for the exchange–correlation potential, or, in other words, to the pressure
dependence of the bulk modulus. If we treat the value of 220 GPa obtained using the LDA as
a bulk modulus at P = 14 GPa, then the fitted equation of state will produce B = 163 GPa
for the zero-pressure state. The pressure derivative of the LDA bulk modulus is calculated to
be 4.0 (table 1), which corresponds to the 56 GPa change in bulk modulus over the 14 GPa
pressure range. The difference between the two values quoted above (220 and 163 GPa) is
57 GPa, and it is thus accurately reproduced in the assumption of the linear dependence of the
bulk modulus on pressure. The extrapolated value of the LDA bulk modulus, 163 GPa, agrees
well with the results of the elastic coefficient calculations discussed below.

It is interesting that the present ab initio results for the BeO EOS agree well with the
simplest ionic model based on the repulsive Born–Mayer potential between the atoms [34].
This model with parameters obtained from the empirical relationships between the properties
and molecular volume of highly ionic materials predicts B = 212 GPa and B ′ = 3.4(3)

[34]. The pressure derivative of the bulk modulus is thus very close to the calculated GGA
value of 3.33. On the other hand, the experimental data based on hydrostatic compression
of single crystals [10] and on ultrasonic measurements on polycrystals [35, 36] give 5.1 and
5.5, respectively. A brief analysis suggests that the experimental EOS derived in reference
[10] cannot be used to extract a reliable value of B ′. These experimental data are equally well
described using two sets of parameters of the third-order Murnaghan–Birch equation of state.
If the fixed value of B = 210 GPa is used, then B ′ = 5.1 ± 1.0 is obtained, while EOS fitting
with the fixed value of B ′ = 4 produces B = 212 ± 3 GPa [10]. This extreme insensitivity
of the quality of the fit to the value of B ′ shows that better quality measurements over a wider
pressure range are necessary if one is to make quantitative experimental conclusions regarding
the pressure derivative of the bulk modulus.

The electronic band structure and density of states for BeO are presented in figure 1.
Electronic properties of BeO have been studied extensively using the orthogonalized linear-
combination-of-atomic-orbitals (OLCAO) method in the LDA framework [37]. Our results
agree qualitatively with the description of the electronic structure given in [37]. The valence
band of this wide-gap insulator consists of an s-character band at low energies, and a p-character
band at higher energies. A direct gap at � was reported from the OLCAO calculations as
7.54 eV [37] compared to experimental values between 7 and 10.7 eV, in quite good agreement
considering the usual band-gap underestimation within the DFT framework. We obtained an
even higher value of 8.4 eV for this wide-gap insulator. It is likely that the improved description
of the band-gap is due to the use of the GGA approximation as opposed to the LDA one.

3.3. Structural changes under pressure

The BeO structure scales isotropically under hydrostatic compression as was noted in the
experimental study [10]. The linear compressibilities calculated from linear fits to the a(P ) and
c(P ) dependencies from 0 to 3 GPa are practically identical for the two axes: βa = 1.51 TPa−1,
βc = 1.48 TPa−1. These results are in excellent agreement with the experimental low-
pressure data of 1.50(4) and 1.46(3) TPa−1, respectively [10]. Note that the Hartree–Fock
study gives 1.34 and 1.37 TPa−1 [8], while the PIB model gives 1.73 and 1.91 TPa−1 for linear
compressibilities [9]. We further evaluated the linear compressibilities from higher-order
polynomial fitting of the a(P ) and c(P ) data. We used a function of the form

a(P )/a0 = 1 + βaP +
∑

n=2

knP
n.
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Figure 1. The band structure (left panel) and density of states (right panel) of hexagonal BeO.

This procedure was applied to the data over the same range of pressures as that used in the EOS
fitting, and the results of βa = 1.63 TPa−1, βc = 1.62 TPa−1 are statistically more reliable
than the low-pressure linear fitting ones.

It follows from the above results that the c/a ratio is practically independent of pressure.
Our data show that this ratio increases from 1.624 to only 1.627 over the 100 GPa pressure
range. Analysis of the low-pressure data (figure 2) gives d(c/a)/dP = 0.05 TPa−1, compatible
with the experimental conclusion that the c/a ratio does not change with pressure [10].
Semiempirical results obtained using the PIB model give quite a different value for the pressure
derivative of the c/a ratio, −0.29 TPa−1 [9]. This shows that the delicate pressure-induced
structural changes in the BeO crystal can be only reproduced using full ab initio treatment.

The internal parameter z, the only other structural parameter that might be responsible
for qualitative structural changes, is also unchanged under pressure. Experimental results give
dz/dP = 0.3 ± 0.3 TPa−1 [10], and our calculations show that the absolute value of dz/dP

is less then 0.01 TPa−1. We found that the z-parameter only decreases by 0.05% over the
pressure range of 100 GPa. This implies that the ratio of two inequivalent Be–O bond lengths
is constant over the large pressure range (figure 3).

The bulk modulus of 206(3) GPa as obtained from the calculated EOS agrees well with
the experimental value of 210(3) GPa [10]. It is also in good agreement with the value of
204 GPa obtained from the calculated elastic stiffness tensor (table 2), which illustrates the
high level of internal consistency of the present results.

3.4. Elastic coefficients of BeO

Calculated elastic stiffnesses are shown in table 2 in comparison with the available experimental
and theoretical data. The errors quoted for the Cij -values are associated with (i) the deviation
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of the stress–strain relationship from linearity, and (ii) the difference between the values of
C13 obtained from two different strain patterns. The latter error serves as a measure of internal
consistency of the calculations, since the two values of C13 compared here are obtained
from calculations with different crystal symmetry and thus with little scope for fortuitous
cancellation of errors. These two values for, e.g., the GGA calculation quoted in table 2 are
71.6 and 72.5 GPa, within the statistical error due to the linear fitting (1 GPa in this case).

It appears from table 2 that the room temperature ultrasonic data [14] and x-ray data [15]
are in good agreement with each other. The off-diagonal stiffnesses C12 and C13 reported in
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reference [13] are significantly different from the two other experimental data sets [14, 15],
which causes a discrepancy in the C66-value as well. Our calculated values of the diagonal
stiffnesses agree with the results of reference [14] to better than 5%, in an obviously better
agreement than the Hartree–Fock results [8]. On the other hand, our calculated off-diagonal
stiffnesses are 15–20% lower than the experimental values. It is possible that the thermal
effects are partially responsible for the deviations, although these effects are expected to be
small for oxide ceramics.

A number of incomplete results on elastic coefficients of BeO are available. The com-
pliance component S11, which is the reciprocal of Young’s modulus measured in the basal plane,
has been reported as 2.33 × 10−3 GPa−1 [38]. Similar values were obtained from ultrasonic
measurements on single crystals, 2.40 × 10−3 GPa−1 [14] and 2.57 × 10−3 GPa−1 [13], and
on polycrystals, 2.58 × 10−3 GPa−1 [39]. The GGA calculations give S11 = 2.46 × 10−3

GPa−1 in good agreement with the above data. Experimental ultrasonic data for polycrystals
with preferred orientations were analysed to extract the values of the compliances S33 and
2S13 + S44 from the orientational dependence of Young’s modulus [39]. These compliances
were reported as 2.17 × 10−3 GPa−1 and 5.95 × 10−3 GPa−1, respectively, while our GGA
results are 2.29 × 10−3 GPa−1 and 6.51 × 10−3 GPa−1. This is a very good agreement, taking
into account the fact that the measured compliances include corrections for porosity, Poisson
ratio effect, size and shape of samples, not to mention the error of the procedure for extracting
single-crystal values from polycrystalline data [39].

The knowledge of the elastic compliances opens an alternative way of evaluating the linear
compressibilities [40]:

βa = S11 + S12 + S13 βc = 2S13 + S33.

These expressions give βa = 1.62 TPa−1, βc = 1.66 TPa−1. This calculation provides another
consistency check for the calculations, since the values obtained from the pressure dependence
of the lattice constants and from the elastic compliances should be the same. The corresponding
compressibilities calculated from a polynomial fitting in section 3.3 are essentially the same as
quoted above (1.63 and 1.62 TPa−1). The two approaches are thus equivalent. It is difficult to
establish, on the basis of the available data, which of the two linear compressibilities is higher.
The ratio βa/βc can be shown to be, in hexagonal crystals,

βa/βc = (C33 − C13)/(C11 + C12 − 2C13).

The relatively low accuracy of the calculated off-diagonal elastic stiffnesses (table 2) prohibits
a definitive conclusion on the ordering of the linear compressibilities. Our results thus support
the experimental conclusion that the compression is essentially isotropic [10].

We present in table 2 two sets of elastic stiffnesses calculated using the LDA exchange–
correlation functional. The first set corresponds to the equilibrium structure as optimized
using the LDA, while the second set shows elastic stiffnesses calculated for the experimentally
observed structure. The latter structure is essentially equivalent to the ground-state structure
calculated using the GGA. The second set of LDA results and the GGA elastic stiffnesses
therefore correspond to the same atomic structure, and their comparison is indicative of the
effect of the exchange–correlation potential on elastic properties. It follows that high elastic
stiffnesses usually attributed to the LDA might be due entirely to the fact that LDA calculations
are typically performed for structures with smaller lattice parameters than those used for GGA
calculations. In the case of BeO, the effect of this artificial compression is removed, allowing
comparison of LDA and GGA results for the same structure and showing that the LDA elastic
stiffnesses become noticeably smaller than the GGA ones. We could note in passing that the
bulk modulus derived using LDA analysis of the GGA equilibrium structure, 173 GPa, agrees
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reasonably well with the estimate of 163 GPa given above, based on the pressure dependence
of the bulk modulus.

The discrepancy between various sets of measured and calculated elastic coefficients
merits further discussion. The bulk modulus can be deduced from the present study to be
205(2) GPa. This value follows from both the hydrostatic compression data fitted by the
third-order equation of state (table 1), and from the data obtained using infinitesimal symmetry-
breaking displacements (table 2). This result agrees with the experimental value of 210(3) GPa
obtained in hydrostatic compression experiments [10]. A similar value of 214 GPa has been
derived from static mechanical tests of polycrystalline samples [41]. The dynamic Young’s
modulus measured for polycrystals with preferred orientation [42] was later analysed to give
B = 214 GPa [36], although this result is unreliable in view of the number of approximations
made by the authors. Preliminary results of the static measurements on polycrystalline BeO
gave 210 GPa [43]. On the other hand, experimental measurements based on ultrasonic
techniques [13, 14] give a bulk modulus that is 5–10% higher than hydrostatic results. For
example, ultrasonic experiments on polycrystalline samples gave the isothermal bulk modulus
of 219 GPa [35, 36] in good agreement with the single-crystal ultrasonic result, 224 GPa [14].
This suggests that the calculated elastic stiffnesses for BeO cannot agree with the experimental
ultrasonic values to better than 5–10%, regardless of the quality of the calculation itself.

We expect that the reason for the discrepancies lies in the inherent difference between
experimentally measured static and dynamic elastic moduli. It has been shown that dynamic
moduli can be up to twice as big as the static ones for rocks and related materials [44, 45].
Noticeably higher dynamic moduli have also been reported for graphitic ceramics [46], shape
memory alloys [47], and a number of other materials [48]. It would be interesting to see this
issue discussed further by practitioners of the respective experimental techniques.

4. Conclusions

Ultrasoft pseudopotentials within the GGA framework of the density functional theory are
shown to provide reliable tools for predicting the structure and mechanical properties of
hexagonal BeO. Calculated elastic coefficients confirm that the experimental results of Cline
et al [14] are more reliable than the earlier data [13]. However, ultrasonic measurements appear
to produce an elastic stiffness tensor that is inconsistent with the results of static compression
tests and with the theoretical results. Further experimental studies on high-quality single
crystals, preferably carried out using a variety of techniques including static testing, might be
able to shed more light on this apparent controversy.
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